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Separation of variables and exact solution of the Dirac 
equation in non-static Minkowski spacetimes 

Victor M Villalbat 
Centro de Fisica, Institute Venezolano de lnvestigaciones Cientificas ( IVIC).  Apartado 
21827, Caracas 1020-A, Venezuela 

Received 5 March 1991 

Abstract. In the present paper, using a second-order formalism, a complete separation of 
variables in the Dirac equation for a free panicle in non-static orthogonal curvilinear 
coordinatesofthe form I = / ( ” ,  ~ ) , ~ = p ( ” , ” ) , y . i , i ~ p r e s e n t e d .  It isrhownthatthe D i m  
equation is separable in eight non-equivalent coordinate systems where the Klein-Gordon 
equation separates. Exact solutions of the Dirac equation in the systems of coordinates 
obtained are presented. 

1. Introduction 

After the appearance of the classical papers of Stackel (1897) and Eisenhart (1934), 
much effort was devoted to the study of the criteria of separability of variables in the 
Schrodinger, Hamilton, Jacobi and other equations of mathematical physics. 

Perhaps the most systematic account of the systems of coordinates where the 
Klein-Gordon equation is separable in the presence of external electromagnetic fields 
is given by the Bagrov group (Bagrov et al (1982) and references therein) who have 
tackled the problem using complete sets of commuting differential operators. Another 
approach to the problem was given by Miller (1977) and Kalnins (1975), using a group 
theoretical approach and the concept of R-separability. They have succeeded in finding 
new systems of coordinates where the free Klein-Gordon equation is separable. 

Further complications arise when we try to analyse the problem of separation of 
variables in the Dirac equation in flat or curved spacetimes because of its matrix 
character; in fact we are dealing with a set of four coupled partial differential equations, 
and there are no general techniques, even in very simple configurations, for solving 
the problem of finding exact solutions. 

The results obtained by Chandrasekhar (19831, showing that the Dirac equation 
admits separation of variables in oblate spheroidal coordinates, stimulated the search 
ofgeneral results aiming to establish in which systems of coordinates the Dirac equation 
separates. Here, we have to mention the work of Cook (1982) who, using a modification 
of the Stackel method, discusses the problem of separability in  the Dirac equation in 
curvilinear coordinates. The results obtained by Bagrov and their coworkers (1973, 
1982) should also be mentioned. They found new exact solutions of the Dirac equation 
in the presence of electromagnetic fields in curvilinear coordinates obtained from the 
analysis of the Klein-Gordon equation. Finally we mention the most recent results 
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obtained by Kalnins er al (1986) studying the Dirac equation, using for this purpose 
a null tetrad formalism. 

Recently, using a further modification of the method of separation of variables 
proposed by Shishkin (Shishkin 1976, Andrushkevich and Shishkin 1987) some exact 
solutions to the Dirac equation in curvilinear coordinates have been reported (Shishkin 
and Villalba 1989, Villalba 1990), showing in this way that the Dirac equation is 
separable in all the cylindrical coordinate systems where the Laplace equation separates 
(cylindrical, parabolic cylinder and elliptical cylinder coordinates). The results obtained 
in static curvilinear coordinates can be generalized for curvilinear coordinates in 
Minkowski spacetimes, and this is the purpose of the present paper. 

The problem of separation of variables and the subsequent search for exact solutions 
in non-static Minkowski spacetimes is of interest in the analysis of quantum effects 
associated with spin-f particles in accelerated frames of reference. It is clear that, for 
a quantum description of the accelerated particles, it would he desirable to obtain the 
modes associated with the accelerated system of coordinates. This is possible if the 
Dirac equation is separable in the corresponding coordinates. Some results for scalar 
particles have been obtained in this direction (Sanchez 1979,1981, Sanchez and Whiting 
1986) but that is not the case for spinning particles. 

This paper is organized as follows. In section 2 the Dirac equation in curvilinear 
orthogonal coordinates of the form r = f ( u, U). x = g(u,  U), y, z, is expressed in a 
diagonal tetrad gauge where the spinor connections become zero and, in passing, the 
general solution of the massless Dirac equation is obtained in two-dimensional 
Minkowski spacetimes. In section 3 the separation of variables in the Dirac equation 
in the coordinates of the form described in section 2 . i ~  carried out. In  section 4, 
using the results obtained in section 3, exact solutions to the Dirac equation in 
Minkowski curvilinear coordinates are obtained. 

2. Dirac equation in curvilinear coordinates 

Let us consider the system of curvilinear coordinates 

f =f (U, U )  x = g ( u , u )  Y z (2.1) 

g," =fs g," =f,, . (2.2) 

where the functions f and g satisfy the relations 

Then, the line element expressed in the coordinates U, U takes the form 

ds2 = (f,:, -f;,,)(du'-du') +dy'+ dz'. (2.3) 

The covariant generalization of the Dirac equation reads 

(y"(Ju-r, ,)+ m)'€'=O (2.4) 

where the gamma matrices v" are related to the constant gamma matrices 7'' as followS: 

V " =  h",y" y'' = h,!?" ( 2 . 5 )  

with 

[ V " ,  ?"I+ = Zg"' gv,, = diag(-(f:, -f,2c,), -f?.), 1. 1 )  (2.6) 

[ y " ,  y"]+=2?f" v s c , = d i a g ( - l , l , l , l )  (2.7) 
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where the spinor connections rA are given by (Brill and Wheeler 1957) 

rA =&," (a,,h/h":x - r",,JS+" (2.8) 

with 

s " " = f ( r " y " - y " y ' ) .  (2.9) 

From ( 2 . 5 )  and (2.6) it is clear that two different representations of the Dirac 
matrices are related through a similarity relation and, therefore, there is an infinite set 
of y-matrices to write (2.4). Among the possible Dirac matrix representations, we 
choose to work in two he,. gauges which have a simple geometrical interpretation: the 
diagonal (rotating) gauge tetrad, where the curvilinear 7 matrices are related to the 
constant y by 

i " = ; y '  r' = ?: = y 3  (2.10) 

where 

(2.11) 2 112 
h = ( J , t - J , J  

and the Cartesian (fixed) gauge tetrad, where the Dirac matrices T, which also satisfy 
the anticommutation relations (2.7), are related to the constant y matrices by 

T" = h - ' ( y o L u - y % , )  
= y 2  + z  = y 3 .  

T" = h - ' ( y ' f , .  - r"LJ 
(2.12) 

In the above gauge the Dirac equation takes the simple form 

(2.13) ) (: J,, +h 7" J , +  y2J,,,+ y'J, + m qc= 0 

and no spinor connections are present. 

constant y matrices, 
The transformation S, relating the Dirac matrices in the Cartesian gauge and the 

S-'T"S= f' (2.14) 

takes the form 

(2.15) S =cosh-- 6 y'y' sinh -= 6 exp-- f i n ,  y y 
2 2 2 

where the value of 9 is given by the expression 

(2.16) 

Then, using the matrix transformation S it is possible, from (2.14), to obtain the 
corresponding Dirac equation in the diagonal gauge. Substituting (2.14) into (2.13) 
the Dirac equation can then be written as 

1" 
L" tanh a=-. 

(2.17) ($ J ,  +h Y'  a,, + y2aJ + y i d ,  + m 

where 

Wc= h - ' / ' S @ .  (2.18) 
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Equation (2.17) takes a particularly simple form when we consider a massless Dirac 
particle in a two-dimensional spacetime (k,, = k.- = 0). In  this case, due to the conformal 
invariance of the resulting equation, the Dirac equation takes the form 

( ~ ' J ~ + Y ' J , ) @ = O  (2.19) 
and using the representation 

(2.20) 

for the Dirac matrices the solution of (2.13) reads 

(2.21) 

being the above expression solution of the massless Dirac equation for any two- 
dimensional line element of the form 

ds2 = (fU -ff,)(dv2 -du2).  (2.22) 

3. Separation of variables 

In order to separate variables in the Dirac equation expressed in the coordinates (2.1) 
we choose to work with (2.17). The reasons for such a selection become evident if we 
look at the simple expression that the Dirac equation takes in the diagonal tetrad gauge 
when we make the transformation that reduces the spinor connections to zero. Then, 
applying the method of separation of variables proposed by Shishkin (1976), we are 
able to write the Dirac equation (2.17) as a sum of two commuting first-order differential 
operators: 

( R ,  + R,) z = 0 [ R , ,  k,]- = o  (3.1) 

(3.2) 

with 

(3.3) 

(3.4) 
1 

h 
k,  =-(yod,+ y'J,)y2y3 

R2=(y2a, .+y3J~)y2y' .  (3.5) 

Noticing that the operator (3.5) commutes with linear momenta operators -iJy, -iJ;, 
with eigenvalues ky and k, respectively, in the representation for the Dirac matrices 
(2.20) the spinor X then takes the form 

(3.6) 
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with 

L 2 = k : + k i + m 2  (3.7) 
where X, satisfies the equation 

(u'do+iu2J,  + iRh)Z, = 0 

Equation (3.8) cannot be separated in terms of two commuting first-order differential 
operators if the function h depends on the two variables U and U. As a preliminary 
step in the process of separation of variables, we introduce a further similarity transfor- 
mation T acting on the u-matrices and on the spinor X,: 

T = em exp(iPu') (3.9) 

with a ( u ,  U )  and p(u ,  U). 
Applying transformation (3.9) to (3.8), and imposing the conditions 

io.. = a," iP,. = a," (3.10) 

we obtain 

[u'a,+iu2a,+iLh exp(2ipu3)]Y=0 (3.11) 

where the spinor Y is related to Z by the expression 

TY=X y = ( 3  
(3.12) 

In order to separate variables in (3.11) we impose the relation 

a (u)+ib(u)u '  
h (3.13) exp(2ipu') = 

Then, the differential equation for the spinor Y takes the form 

( L ,  - Lp') Y = o  (3.14) 

L, = U'J" +iLa(u) (3.15) 

L,= u l J , + R b ( u ) .  (3.16) 

Introducing the auxiliary spinor W, 

Y = (U3 L, + L2) w (3.17) 

we obtain a separable second-order differential equation for the spinor W. Introducing 
the constant of separability h and the spinor A, the resulting system of equations reads 

[J:+R2a2+iLu'a,,]A = h2A (3.18) 

[a:-A'b2+Lu3b,,]A= A'A (3.19) 

where A is related to W by the transformation 

1 
Q =- (1 - iu2). (3.20) 

Notice that, due to the explicit form of the Pauli matrix u3, (3.18) and (3.19) are 
decoupled and the spinor A can be written in the simple form 

Jz W = Q A  

(3.21) 
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where the functions 6, 5, A and B satisfy the two systems of coupled differential 
equations 

Substituting A into (42) and using expression (3.17) Y is given by 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

The above expression for Y can be substituted into (3.12), and, using (3.6) with (3.21, 
the solution to the Dirac equation (2.13) is then 

(3.27) 

It should be mentioned that condition (3.13) implies that Lame’s function presents 

h’= ni (u )+  bi( U), (3.28) 

Condition (3.28), for the Lame function h, is a necessary condition of separability for 
the Klein-Gordon equation in two-dimensional orthogonal curvilinear coordinates 
(Kalnins 1975, Miller 1977). Therefore our search for orthogonal systems ofcoordinates 
where the Dirac equation admits a complete separation of variables reduces to those 
where the Klein-Gordon equation is also separable. 

an additive character of the form 

4. Exact solutions 

I n  this section we shall obtain exact solutions to the Dirac equation (2.13) or (2.17) 
in the curvilinear orthogonal coordinates where the separation of variables is possible, 
i.e. there exist functions a ( u )  and h ( u )  satisfying condition (3.28) with 

P... - P . . .  = o  (4.1 ) 

where is given by the expression 

Obviously the Dirac equation is separable also in the simple case when h depends on 
only one variable. This situation corresponds to the following system of coordinates 
(hyperbolic coordinates): 

f = e ’  sinh U x =e‘  cosh U Y z (4.3) 
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with a line element of the form 

ds2 = e2"(du2- du') + dy'+ dz', (4.4) 

For this metric the h-function is h =e". Then, using the explicit representation of the 
Pauli matrices, the equation 

(n 'Ju+iu 'Ju +id e")I:, = O  (4.5) 

can be rewritten as follows: 

where we have considered 

The solution of the system (4.6), (4.7) is 

~ ~ = e - " " [ c , ( 2 d e " ) ' " ~ ( i w , 2 i w +  1,2de") 

+c2(2 /  e")+"(-io, -2iw + 1,2/ e")] (4.8) 
I::= -ie-""[c,(2dee")""M(iw,2iw+ 1,2/e") 

-c2(2/ e")-'"M(-io, -2iw + I ,  2d e")] (4.10) 

where M ( a ,  b, x)  is the confluent hypergeometric function (Abramowitz and Stegun 
1964). The spinor '@< solution of (2.13) is related to Z (3.6) as follows: 

(4.11) 

Now, we proceed to solve the Dirac equation in the systems of coordinates where 
it is possible to find functions p of the form (4.2) satisfying condition (4.1). 

4.1.  Parabolic cylinder coordinates (parabolic coordinates of type I )  (Kalnins 1975) 

I = f (  U'+ U') x = uv. (4.12) 

For this system of coordinates the line element takes the form 

dsZ = (U' - uZ)(du'-du2) + dy'+dr'. (4.13) 

The spinor 'Pc solution of (4.13) is related to I: as follows: 

' P c = ( u ' - ~ ' ) - ' / 4 e x p  (4.14) 

and the functions a ( u )  and b ( u )  in (3.13) take the form 

a ( u )  = U b(u)=-iu.  

Then, the matrix transformation T (3.9) reads 

(4.15) 
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Substituting the value of a ( u )  given in (4.15) into the coupled system of ordinary 
differential equations (3.221, (3.23) then i and 5 reduce to solutions of two parabolic 
cylinder equations (Abramowitz and Stegun 1964), taking the general form 

c =  exp [ -(: u 2 ) ]  ( d , M  (g,;, d u 2 )  + d2uM ($+ 1 ,  i, Ru2 1) (4.17) 

(4.!R) 

where d , ,  d ,  are arbitrary constants. 

take the form 
Analogously, the functions A(u) and B(u), solutions of the system (3.24), (3.25), 

B = e x p [  -(: U')] (: M ( g + & & R u 2 )  + c , A u M ( C + I , ~ , I v 2  46 

where c ,  and c2 are constants 

4.2. Hyperbolic coordinates of type I1 

, = I  sinh(u ' - u)+exp(u+ U )  

x =  -I , s inh(u-u)+exp(u+u) ' Y z 

The line element can be written as 

(4.!0) 

(4.20) 

(4.21) 

d s 2 =  (e2" +e2")(dv2-du2)+dy2+dz2.  (4.22) 

For the coordinates (4.21), the spinor 'Pc solution of the Dirac equation (2.13) is related 
to P (3.6) as follows: 

where the 'angle' 9 is determined by the relation 

2 e U + Y  - cosh( U - U )  
tanh 9 = 

2 e"+'+cosh(u - U )  

(4.23) 

(4.24) 

For the present system of coordinates, the functions a ( u )  and b ( u ) ,  allowing the 
separation of variables in the Dirac equation, are 

a = e "  b=e".  (4.25) 

Therefore, the functions a and p take the form 

(4.26) 
I 

R = ' t n n - l  a = --tan-' e". 
2 r I 

From (4.26) the matrix transformation T is given by the expression 

1 0 
T =  (o (e" -ie"),(e'" (4.27) 
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After substituting the value of R ( U )  into the system of equations (3.22), (3.23) we find 
that the functions 6, i take the form 

5 = exp[-(ik e")][b,(ZiR e")"M(h, 2A + 1 , 2 i l  e")+ b,(2il e")-" 

XM(-h,-2A+l,2ileU)] 

5 = e x p [ - ( i R e " ) ] [ b , ( 2 1 e " ) ' ~ ( h + l ,  2 h + l ,  2iRe")-b,(2ide")-A 

XM(-A+ 1, -2h+l ,  2i le") l  

where b, and b, are constants. 
Analogously, the solution of the system (3.24), (3.25) with b( v )  = e" is 

A =exp[-(l  e")][n,(2& e")"M(A, 2h+ 1,21 e")+  a,(21e")-" 

x M(-A,  -2h+ 1,21 e")] 

B = e x p [ - ( l e " ) ] [ a , ( 2 1 e " ) " M ( A + 1 , 2 h + 1 , 2 & e " ) - a , ( 2 d e " ) ~ A  

x M ( - h  + 1, -2h+ 1,21 e")] 

where a,  and a2 are arbitrary constants. 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

4.3. Hyperbolic coordinates of type 111 

t = f  cosh(u - u)+e"+" x = - f cosh( u - u )  + e"+" Y 2. (4.32) 

The line element associated with the coordinates (4.32) takes the form 

ds'= (e'" -e2")(du2-du2)+dy2+dz2 (4.33) 

and the solution Y, of the Dirac equation is related to Z (3.6) as follows: 

where 9 is 
e:-l -sinh(u - u j  

tanh 9 = 
2e"+"+sinh(u-u) (4.35) 

For this hyperbolic system of coordinates, the values of a ( u )  and b(u)  are 

a = e u  ib=e".  (4.36) 

Then, !he corresponding "Z!IICS of n snc! ,R read 

ip =ftanh- '  oi = -4 tanh-' 

and the matrix T takes the form 

(4.37) 

(4.38) 
.=(:, 0 

From (4.36) and (4.25) we see that the U dependence of the spinor >: (3.6) for the 
systems of coordinates (4.32) and (4.21) coincide, therefore the functions 6 and [, 
solutions of the system (3.22), (3.23) for the hyperbolic coordinates of type 111 (4.32), 
are given by (4.28), (4.29). 
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Analogously, the solution of the system (3.24), (3.25) can be obtained in a straight- 
forward way, giving the result 

A =exp[ - ( iRe") ] [a , (2 iRe") 'M(A + I ,  2A + I ,  2iRe")-a2(2ite")-* 

x M ( - A  + 1, -2A + 1, 2iR e")] (4.39) 

B=exp[-(ide")][a,(2iRe")*M(A, 2A+1,2iRe")+a,(2iRe")~A 

x M ( - A ,  -2A+ 1,2id e")]. (4.40) 

4.4. Elliptic coordinates of type II  

(i) t = cos U cos U x = -sin U sin U Y 2. (4.41) 

The interval associated with this system of coordinates reads 

ds2=(sin2 U -sinZ u)(du2-du2)+dy2+dzz.  (4.42) 

The spinor solution to the Dirac equation Yc in the Cartesian gauge is 

(4.43) 

where the general form of Z is given by (3.6) and 

tanh B = coth U tan U. (4.44) 

The functions a ( u )  and b(u) ,  allowing the complete separation of variables in the 

a = sin U ib  = sin U. (4.45) 

n:--- ~ n . . ~ t : _ -  :.. e h n  cnn-, i :m"+ee I n  A I \  -7.p 
",,ab cyU*u"L. 111 L l l L  * V " . U I . I ' , L L ~  \-.-.L,, Y.C 

Substituting (4.45) into (3.13) and using (3.10) we obtain 

sin U cos U 
2 a  = -tanh-' ~ 2ip = tanh-I - 

s:" :: cos 3 
(4.46) 

and the matrix T reads 

T = (cos U +COS u ) - ' I 2  ((sin .+;in u ) " ~  O ) (4.47) 
(sin U -sin u ) " ~  ' 

Substituting a ( u )  =sin U into (3.22), (3.23) we get 

Making the ansatz 
v, + e-'#c'"' I I  t = e" 'Os I' 

eirr"> >,=, +,-'d C U I  I S  

V2 

Z? i= 

(4.48) 

(4.49) 

(4.50) 

(4.51) 
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we obtain an equivalent system of equations for the new functions V,, V, and 2, , Z,: 

d - V ,  = AZ, (4.52) du  

d - V,+ 2i sin U V,  = AZ, 
d u  

d - 2, = A Y ,  
du 

d 
du 

(4.53) 

(4.54) 

(4.55) - Z ,  -2i sin u Z ,  = A Y , .  

Substituting (4.52) into (4.55) and making the change of variable U = 28, we obtain 
the following Ince's equation (Arscott 1967) for the function V,: 

V, -4i sin 2iY V, - 4A2 V ,  = 0 (4.56) 

where the dot indicates derivation with respect to the variable 8. Analogously, from 
(4.53) and (4.54) we obtain 

Z2+4i sin 28z,-4A2Z2=0.  (4.57) 

The solutions of (4.56) and (4.57) can be expressed in terms of the convergent series 

(4.58) 
m 

V,  = 1 C,, cos 2 r 8  

A2C, + i C, = 0 

(1 + A2)C, + 2iC4 = 0 (4.59) 

- (  r - l)iC2,-,+ ( I  + h')C,,+ ( r  + 1 ) i G r + ,  = 0 ( r 3 2 )  

and 
*. 

Z , = x  A,, cos 2 r 9  (4.60) 
0 

with 

A2A,-iAI=0 

( l+A2)A2-2iA4=0 (4.61) 

( r -  I)iA,,->+(l +A2)A2,-(r+ l)iA2,+, = O  ( r a 2 ) .  

Then, the solution of the system of equations reads 

where we have made the substitution n = 2r. 
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Following the results obtained by Urwin and Arscott (1969) the series (4.58) and 
(4.60) are convergent for values of U and U. The solution of the system (3.24), (3.25) 
when b(u) is given by (4.45) can be obtained in a straightforward way making the 
changes .4+ -1 and U -f U. Then we have 

(ii) f =cosh U cosh v x = sinh U sinh U Y 2. (4.66) 

The line element in  this case is 

ds2=  (Cosh2 U -cosh2 u)(du2-du2)+dy2 +dz2 (4.67) 

and the spinor 'Pc is related to Z as follows: 

'Pc = (cosh2 U -cosh2 u ) - I t 4  exp [ -( 1" y ' y ' ) ]  yzy3X (4.68) 

where B is given by the relation 

tanh t9 = tanh U coth U. (4.69) 

The functions a ( u )  and 'b(u) ,  allowing the complete separation of variables in the 
Dirac equation, are 

a = sinh U i b = s i n h u  (4.70) 

and the corresponding p -  and a-functions take the form 

sinh U cosh U 
a =f  tanh-' -, 

sinh U cosh U 
ip = f tanh-' - (4.71) 

Substituting (4.71) into (3.9) we obtain 

(4.72) 
sinh U -sinh U)"' 0 

T =  (cosh u +cosh u ) - ' / ' ( (  . 
0 (sinh !!+SlEh 9 )  , 

Also, substituting the value of a ( u ) ,  given by (4.69), into the system (3.221, (3.23), we 
obtain 

(4.73) 

(4.74) 

Noticing that (4.731, (4.74) reduces to the system (4.48), (4.49) when we make the 
changes A + i A ,  u-t iu ,  L-f 4, the solution of the above system of equations (4.73), 
(4.74) is then 



Exact solution of the Dirac equaiion 3793 

where the coefficients En and A,,, after the change A + i A ,  satisfy the recurrence relations 
(4.59) and (4.611, respectively. Analogously, the solution of the system (3.241, ( 3 . 2 5 )  
with b ( u )  = -i sinh ti can be obtained from (4.64), (4.65) in a simple way, giving 

4.5. Elliptic coordinaies of iype I 
f = sinh U cosh U 

The associated line element is 
x = cosh U sinh ti Y 

& 2  = (jiiih2 U + cosp u ) ( d u 2  - ;i i2j+;y2+dz2 

and the spinor 'Y, is related to Z as follows: 

qc = (sinh2 u + cosh' u)-'14 exp [ -(; y ' y l ) ]  y2y'.Y 

with 

tanh 19 = tanh U tanh ti. 

The functions a ( u )  and b(ti) are given by the expressions 
a =sinh U b =cosh ti 

and the a- and p-functions take the form 

2. (4.79) 

(4.80) 

(4.81) 

(4.82) 

(4.83) 

(4.84) 

Substituting (4.84) into (3.9) we obtain 

) (4.85) 
((sinh u + i cosh U)"' 0 

0 (sinh U - i cosh ti)'IL . T = (cosh u + i sinh U)-'" 

The va!ue of Q ( L ~ )  in (4.83) coincides with !he corresponding w!ce obtiined fer ~ ( z )  
in the elliptic system of coordinates (4.66). Then, for (4.79), 5 and are given by (4.75) 
and (4.76), respectively. The functions A ( u )  and B(u) ,  solutions of the system (3.24), 
(3.25) b ( u )  =cosh U, can be obtained from (4.77), (4.78), making the change h + i h  
and ti + i u  - v/2.  Then, we have 

=e-'""" L. ( l ~ n ~ . , c o s h n u ) + e * " " h Y ( i ~ ~ , ,  2A o " sinhnv) .  (4.87) 

The systems of coordinates (4.3), (4.12), (4.21), (4.321, (4.41), (4.661, (4.79) with the 
Cartesian coordinates are the eight non-equivalent system of coordinates where the 
Dirac equation separates using the second-order formaiism proposed in section 3. 
Now, we proceed, for the sake of completeness, to exhibit the transformation S (2.18) 
relating the Dirac spinor in the Cartesian and rotating gauges in the remaining two 
orthogonal systems of coordinates where the Klein-Gordon allows a complete separ- 
ation of variables and the Dirac equation is not separable. 
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4.6. Parabolic coordinates offype I 1  

f = ; ( U  - U)*+ ( U +  U )  x = - + ( U  - u)2+  ( U  + U )  Y 2. (4.88) 

The line element for the coordinates (4.88) is 

d s 2 = 4 ( u -  u)(du2-du2)+dy'+dz2 (4.89) 

and the spinor 'Pc (2.13) is related to >: as follows: 

where the 6 is given by the relation 

v - u + i  
U - u + l '  

tanh 6 = 

4.7. Hyperbolic Coordinates of fype I 

. -Lr..-"L L,.. ..\L^:-l. L,.. I ..,, -*LLv>II 2,u - V , T > L " "  *,U T U,, I 

x =+[-cosh +(U - u)+sinh ; ( U +  U)] Y z 

The corresponding line element is 

ds' = f(sinh U - sinh u)(du'- du') + dy'+ dz' 

and the spinor 'P, is related to I: as follows: 

I ,= ( s inh  u-sinh v)-""exp[-(;yoy1)] y'y'P 

where 6 is 

cosh f ( u  + u )  -sinhf(u - u )  

cosh f ( u  + v)+sinhf(u - u ) '  
tanh 6 = 

(4.91) 

(4.92) 

(4.93) 

(4.94) 

(4.95) 

" ,-"..",..-:-..- ... LUllC1U31U113 

The results presented in this paper show that it is possible to separate variables in the 
Dirac equation in non-static two-dimensional curvilinear coordinates, using a complete 
set of second-order differential operators. The method of separation applied permits 
us to obtain the spinor wave solution of the Dirac equation in any tetrad, and does 
EO! make use of the Xewmafi-Pe~rose E.!! tetrx! fclrma!ism (Chacdrasekhar !983). 
The exact solutions obtained in the present paper suggest the possibility of investigating 
quantum effects associated with spinning particles in non-inertial frames of reference. 
Finally, we note that it  is possible to generalize the techniques presented in this paper 
to analyse other more complicated relativistic wave equations. 
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